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Simulation of Ground-Water Flow and Contributing
Recharge Areas in the Missouri River Alluvial Aquifer at
Kansas City, Missouri and Kansas

By Brian P. Kelly

ABSTRACT

The Missouri River alluvial aquifer in the
Kansas City metropolitan area supplies all or part
of the drinking water for more than 900,000 peo-
ple and is the only aquifer in the area that can sup-
ply large quantities of ground water for public and
industrial use. Hydrogeologic data collected and
compiled for more than 1,400 locations in the
study area were entered into a geographical infor-
mation system and interfaced with the U.S. Geo-
logical Survey ground-water flow model
MODFLOWARC, a modified version of MOD-
FLOW, and the U.S. Geological Survey particle
tracking program MODPATH to determine the
contributing recharge areas for public-water-sup-
ply well fields. The model has a uniform grid size
of 150 by 150 meters and contains 310,400 cells
in 4 layers, 160 rows, and 485 columns. The num-
ber of active cells in the model is 67,362. The
model was calibrated to both quasi-steady state
and transient hydraulic head data. Sensitivity
analysis indicates that the model is most sensitive
to increases and decreases in calibrated hydraulic
conductivity values and least sensitive to
decreases in vertical conductance between layers
1 and 2 and increases in riverbed conductance.
Ground-water flow was simulated for the range of
conditions expected to occur with the following
well-pumping-rate/river-stage scenarios: (1) low
pumping rates and low river stage; (2) low pump-
ing rates and high river stage; (3) quasi-steady
state conditions; (4) high pumping rates and low

river stage; and (5) high pumping rates and high
river stage.

Ground-water-flow and particle tracking
results indicate that (1) the capture of ground
water by pumped wells as it moved downgradi=nt
toward the Missouri River caused the long upval-
ley extent of some contributing recharge areas; (2)
well fields located near alluvial valley walls heve
total contributing recharge areas that extend a
long distance from the walls because little water
is available from this boundary; (3) induced
recharge caused by proximity to a major river
decreases the size of the contributing recharge
area when compared to the contributing recharge
areas of other wells or well fields with similar
pumping rates located farther from a major river;
(4) induced recharge from a river causes the con-
tributing recharge area to be skewed toward th=
river; (5) the distribution of vertical anisotropy of
hydraulic conductivity in the aquifer affects
ground-water travel times within the contributing
recharge area of each well or well field; (6) high
river stage may decrease the regional ground-
water gradient in the vicinity of a well field and
may actually increase the contributing recharge
area of those well fields; and (7) movement of
ground water beneath rivers because of well
pumping occurs in several locations in the stuc'y
area.

The effect of well pumping and river stage
on the total contributing recharge area of each
well field in the study area is different because of

Abstract
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the unique qualities of each well field with respect
to the orientation of the well field to the geometry
of the aquifer, the alluvial valley walls, the rivers,
and other pumped wells; the magnitude and spa-
tial distribution of the hydraulic properties of the
aquifer in the vicinity of each well field; and the
rate of pumping from each well field.

INTRODUCTION

The Missouri River alluvial aquifer in the Kan-
sas City metropolitan area (fig. 1; pl. 1) supplies all or
part of the drinking water for more than 900,000 peo-
ple in 90 municipalities and public-water-supply dis-
tricts (Missouri Department of Natural Resources,
1991). In 1995, 11 public well fields were supplied by
the aquifer, a new well field was planned, and 1 well
field was being expanded. The Missouri River alluvial
aquifer, and to a much lesser extent, the adjoining allu-
vial aquifers of the Kansas, Blue, and Little Blue Riv-
ers are the only aquifers in the area that can supply
large quantities of ground water for public and indus-
trial use.

The Mid-America Regional Council (MARC), a
planning association of city and county governments
in the Kansas City metropolitan area, currently (1996)
is developing a comprehensive ground-water protec-
tion plan for the Missouri River alluvial aquifer near
Kansas City. In 1991, the U.S. Geological Survey
(USGS) in cooperation with MARC began a study to
provide hydrogeologic data for the Missouri River
alluvial aquifer. In 1993, a ground-water flow model
was used to evaluate the response of ground-water lev-
els, ground-water travel times, contributing recharge
areas (CRAs) of well fields, and directions of ground-
water flow to changes in pumping and river stage.
Knowledge of ground-water flow directions between
potential sources of ground-water contamination and
public-water-supply well fields is needed to under-
stand the potential effects of present and planned
development on ground-water quality in the aquifer
and provide a better understanding of flow systems in
developed alluvial aquifers.

Purpose and Scope

The purpose of this report is to describe the
development, calibration, and application of a ground-
water flow model of the Missouri River alluvial aqui-

fer in the Kansas City metropolitan area. In particular,
the simulated results of five different scenarios of
pumping rates and river stage that represent the range
of conditions expected to occur are presented: (1) low
pumping rates and low river stage, (2) low pumping
rates and high river stage, (3) quasi-steady state condi-
tions of January 1993, (4) high pumping rates and low
river stage, and (5) high pumping rates and high river
stage. The CRA for each public-water-supply well
field and related ground-water travel times at various
distances from each public-water-supply well field are
presented for each of the five scenarios.

Much of the data used in the model vere col-
lected during a previous study of the Misso ui River
alluvial aquifer (Kelly and Blevins, 1995). Data col-
lected during the present study were two synoptic
water-level measurements of 123 wells in October
1993 and 98 wells in February 1994. Data indicating
rates of ground-water pumpage from public-water-
supply well fields and industrial water-supr'y wells
located in the study area, daily rainfall amonnts, and
river stages for the Missouri, Kansas, Blue, and Little
Blue Rivers also were collected.

Description of Study Area

The study area extends from approximately 8
km (kilometers) north of the Leavenworth County-
Wyandotte County line in Kansas to approximately 4
km east of the Jackson County-Lafayette County line
in Missouri and is bounded by the Missouri River allu-
vial valley walls on the north and south. Parts of the
alluvial valleys of the Kansas, Blue, Little ’lue, and
Fishing Rivers (pl. 1) are included. Parts of Clay, Jack-
son, Lafayette, Platte, and Ray Counties in Missouri
and Leavenworth and Wyandotte Counties in Kansas
are within the study area.

About two-thirds of the land use in the study
area is row-crop agriculture, and about one-third is
industrial. Land use in the remainder of the study area
consists of single- and multiple-family dwe'lings,
commercial establishments, undeveloped land, and
publicly owned land, including airports, sewage and
water treatment plants, and parks (Kelly and Blevins,
1995).

2 Simulatlon of Ground-Water Flow In the Missourl River Alluvlal Aqulfer

























































































































































high river stage (LPHR; pl. 3); (3) quasi-steady state
conditions of January 1993 (QUASI; pl. 4); (4) high
pumping rates and low river stage (HPLR; pl. 5); and
(5) high pumping rates and high river stage (HPHR;
pl. 6).

The river-surface altitude was defined for each
river cell in the model for the steady state calibration
and for each stress period of the transient calibration.
High and low river-stage data sets were chosen from
the transient stress-period data based on a comparison
of the Missouri River stage at the USGS gage located
in Kansas City with the average annual high and low
stages calculated from 1958 to 1994. The annual
mean discharge was 54,890 /s (cubic feet per sec-
ond), which corresponds to a river-surface altitude of
219.62 m at the gage. High river-stage conditions
were represented by the September 26, 1993, river-
stage data when the average river-surface altitude was
221.65 m (93,160 ft3/s discharge). A discharge of
91,200 ft3/s corresponds to a river-surface altitude of
221.55 m and was exceeded 10 percent of the time
between 1958 and 1994 (Reed and others, 1995). The
river-stage altitude at the USGS gage in Kansas City
for the January 1993 quasi-steady state river-stage
conditions was 218.51 m (39,930 ft3/s discharge).
Low river-stage conditions were represented by the
January 16, 1994, river-stage data when the average
river-surface altitude at the USGS gage in Kansas
City was 217.95 m (28,980 ft3/s discharge). A dis-
charge of 23,400 ft3/s corresponds to a river-surface
altitude of 217.5 m and was exceeded 90 percent of
the time between 1958 and 1994 (Reed and others,
1995).

High well pumping rates were set at 1.25 times
the average annual pumping rates, and low pumping
rates were set at 0.75 time the average annual pumping
rates. Recharge was the same as used in the January
1993 steady state simulation.

For each scenario, one imaginary particle of
water was placed on the water table in the center of
each topmost active model cell and tracked to its even-
tual discharge point. Particles were placed in this man-
ner for two reasons: (1) most water entering the
alluvial aquifer comes from direct infiltration by pre-
cipitation or from the major rivers; and (2) the primary
source of potential contamination to the alluvial aqui-
fer is from leaks or spills that occur on the land sur-
face. Consequently, the CRA computed by
MODPATH includes the source area of water to each
well or well field and ground-water travel times from

the land surface and the major rivers to each well or
well field. The starting location and travel times of the
particles that discharged to a well were entered into
the GIS. The model cell corresponding to each parti-
cle-starting location was assigned the travel time of
that particle. Model cells with travel times from 0 to 1
year, 1 to § years, 5 to 10 years, 10 to 100 years, and
100 to 1,000 years were grouped to create 1-, 5-, 10-,
100-, and 1,000-year CRAs for each scenario (pls. 2—
6). The total area of each CRA was determined by
summing the areas of all model cells within each
group for each well field.

Individual Well Field Results

The shape, size, and ground-water travel timre
within the total CRA for each well or well field are
affected by changes in river stage and pumping rates
and by the location of the well or well field with
respect to the major rivers, alluvial valley walls, and
other pumped wells. Similarities in the shapes of
CRAs between different wells and well fields can be
attributed to similarities in the pumping rate and the
position of the wells or well fields in relation to the
major rivers, the alluvial valley walls, or other well
fields. A typical CRA for a well located within an
aquifer so that effects from any hydrologic boundary
are negligible will have a bull’s-eye pattern. In the fol-
lowing discussion, the CRA for each public-water-
supply well field will be discussed individually fol-
lowed by a discussion of the CRAs for the industrial
well fields.

Missouri Cities Water Company

The shape of the simulated total CRA for the
Missouri Cities Water Company well field was
approximately triangular for all pumping and river-
stage scenarios and was affected by the proximity of
the well field to both the Missouri River and the allu-
vial valley walls (well field number 1, pls. 2-6).
Recharge to the well field was partially induced from
the Missouri River by pumped wells and is shown by
the location of the 1- and 5-year CRA below and next
to the river. The Missouri River forms the eastern
boundary of the total CRA, which extends west along
the alluvial valley wall and away from the river fo~
approximately 4 km for all pumping and river-stage
scenarios. The capture of ground water by the pum»ed
wells as the water moved downgradient toward the
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Missouri River caused the long upvalley extent of the
total CRA. The 1-year CRA is between the area south
of the well field to the Missouri River because of the
short distance ground water traveled from the bottom
of the riverbed in layer 2 of the model to the screened
interval of the wells in layer 3 of the model. The 5-
and 10-year CRAs are centered around the well field,
but are skewed toward the west away from the river.

Simulated pumping rates for the Missouri Cities
Water Company well field (table 13) ranged from
5,180 m>/d for the QUASI (pl. 4) scenario to 9,228
m?>/d for the high pumping-rate scenarios. The size of
the total CRA (table 14) ranged from 2.611 km?
(square kilometers) for the HPHR (pl. 6) scenario to
5.469 km? for the LPHR (pl. 3) scenario.

For the Missouri Cities Water Company well
field, the 1-, 5-, and 10-year CRAs are larger in both
the high pumping-rate scenarios, but the 100-year
CRA is smaller. The 1,000-year CRA is largely unaf-
fected by pumped wells. Typically, a CRA will

increase in size with an increase in pumping rate.
However, the largest total CRA for the Missouri Cities
Water Company well field occurred during the LPHR
scenario (pl. 3) and the smallest occurred during the
HPHR scenario (pl. 6). The size of the 100-year CRA
has the largest effect on the size of the total CRA
because it ranges from 68 percent (HPHR, pl. 6) to 88
percent (LPHR, pl. 3) of the total CRA. The effect of
river stage on the size of the CRA is not well under-
stood. Low river stage did not affect the size of the 1-
year CRA, but increased the size of the 5- and 10-year
CRAs for the low pumping-rate scenarios and the 5-
year CRA for the high pumping-rate scenario. High
river stage increased the 100-year CRA during the low
pumping scenarios but decreased the 100-yzar CRA
during the high pumping scenarios. The 10-year CRA
is larger for the LPLR scenario (pl. 2). Small changes
in the potentiometric surface in this low gradient area
can cause large changes in the direction of ground-
water flow. The ground-water divide that defines the

Table 13. Simulated pumping rates for the Missouri Cities Water Company well field

Waell location In model

Pumpling rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High
3 69 120 1,384 1,295 1,846 2,307
3 69 120 1,384 1,295 1,846 2,307
3 69 121 1,384 1,295 1,846 2,307
3 69 122 1,384 1,295 1,846 2,307
Total 5,536 5,180 7,384 9,228
Table 14. Contributing recharge areas for the Missouri Cities Water Company well field
Area, In square kllometers
Low pumplng rate Jan. 1993 High pumping rate
Contributing quasl-steady
recharge area Low rlver stage High river stage state Low rlver stage High river stage
1-year 0.068 0.068 0.068 0.09 0.09
S-year .248 18 225 315 225
10-year 383 225 .405 45 .495
100-year 3.29 4.793 3.285 3.195 1.778
1,000-year .023 .203 0 .023 .023
Total 4.012 5.469 3.983 4.073 2.611
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southern boundary of the 100-year CRA shifted north-
ward and eastward during the HPHR scenario and
decreased the size of the total CRA. A slight change in
the potentiometric surface caused by high river stage
and low ground-water gradient away from the well
field is assumed to have caused the ground-water flow
divide to move to the north.

Gladstone, Missouri, Well Field

The shape of the Gladstone, Missouri, well field
(well field number 2, pls. 2-6) is elongated upgradient
for all pumping and river-stage scenarios. This well
field is similar to the Missouri Cities Water Company
well field because it also is located next to the Mis-
souri River and close to the alluvial valley walls.
Induced recharge from the Missouri River is shown by
the location of the 1- and S-year CRAs next to and
below the river. The total CRA extends for approxi-

mately 3 km to the northwest from the well field. Its
long narrow shape was caused by the capture of
ground water by the pumped wells as it flowed dovn
the natural gradient toward the Missouri River and by
the alluvial valley walls to the north that were a flow
boundary. The 1-year CRA is next to or below the
Missouri River for all scenarios because of the short
distance ground water traveled from the bottom of the
riverbed in layer 2 of the model to the screened inter-
val of the wells in layers 3 and 4 of the model. The 5-
and 10-year CRAs are centered around the well field
but skewed to the northwest.

Simulated pumping rates for the Gladstone well
field (table 15) ranged from 6,540 m>/d for the low
pumping-rate scenarios to 10,895 m?>/d for the high
pumping-rate scenarios. The total CRA (table 16)
ranged from 1.914 km? for the LPHR scenario (pl. 3)
to 3.669 km? for the HPLR scenario (pl. 5). The tctal

Table 15. Simulated pumping rates for the Gladstone, Missouri, well field

Well locatlon In model

Pumping rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High

3 87 171 1,308 1,526 1,743 2,179

3 87 171 1,308 1,526 1,743 2,179

4 88 172 1,308 1,526 1,743 2,179

4 88 172 1,308 1,526 1,743 2,179

4 88 172 1,308 1,526 1,743 2,179

Total 6,540 7,630 8,715 10,895

Table 16. Contributing recharge areas for the Gladstone, Missouri, well field

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Contrlbuting quasl-steady

recharge area Low rlver stage High river stage state Low river stage High river stage

1-year 0.023 0.023 0.068 0.068 0.068

5-year .18 .18 .18 158 .158

10-year .158 .045 135 .158 .09

100-year 3.06 1.643 3.173 3.24 2.295

1,000-year .09 .023 .045 .045 023

Total 3.511 1914 3.601 3.669 2.634
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CRA for the Gladstone well field increased in
response to increased well pumping rates and
decreased with decreased well pumping rates. Low
river stage increased the total CRA, and high river
stage decreased the total CRA.

Kansas City, Missourl, Well Field

The shape of the total CRA for the Kansas City,
Missouri, well field (well field number 3, pls. 2-6) is
approximately circular, centered around the well field,
and extends along the northern bank of the Missouri
River for approximately 1 km for all pumping and

river-stage scenarios. The total CRA is limited in
extent by the nearness of the well field to th= Missouri
River and the alluvial valley walls. The locztion of the
1- and 5-year CRAs below and near the Missouri
River and the relatively small total CRA indicate
induced recharge from the Missouri River supplies a
large part of the water for this well field.

Simulated pumping rates for the Kan<as City
well field ranged from 2,442 m%/d for the QUASI sce-
nario to 73,062 m>/d for the high pumping-rate sce-
nario (table 17). The total CRA ranged from 0 km? for
the QUASI scenario (pl. 4) to 0.339 km? fo- HPHR
scenario (table 18).

Table 17. Simulated pumping rates for the Kansas City, Missouri, well field

Pumping rate,

Well location In cublc meters per day

Layer Row Column Low Jan. 1993  Average High
4 90 176 3,985 222 5314 6,642

4 90 176 3,985 222 5,314 6,642

4 90 180 3,985 222 5,314 6,642

4 91 180 3,985 222 5,314 6,642

4 92 178 3,985 222 5,314 6,642

4 92 178 3,985 222 5,314 6,642

4 92 178 3,985 222 5314 6,642

4 93 179 3,985 222 5314 6,642

4 93 179 3,985 222 5,314 6,642

4 93 179 3,985 222 5,314 6,642

4 94 179 3,985 222 5,314 6,642
Total 43,835 2,442 58,454 73,062

Table 18. Contributing recharge areas for the Kansas City, Missouri, well field

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Contributing quasl-steady

recharge area Low river stage High river stage state Low river stage High river stage

1-year 0.113 0.113 0 0.135 0.135

5-year .18 18 0 158 .158

10-year 0 0 0 .045 023

100-year .045 .045 0 0 023

Total 0.338 0.338 0 0.338 0.339
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The total CRA for all pumping and river-stage
scenarios remained about the same size except for the
QUASI scenario when pumping rates were so low that
a CRA was not apparent and for the HPHR scenario
when the increase of the 100-year CRA slightly
increased the total CRA. This result indicates that
induced recharge from the Missouri River is the domi-
nant source of water to the Kansas City well field.
River stage changes did not affect the size of the 1-, 5-,
10-, or 100-year CRAs between the two low pumping-
rate scenarios and only slightly changed the 10- and
100-year CRAs between the two high pumping-rate
scenarios.

North Kansas City, Missourl, Well Fleld

The shape of the total CRA for the North Kan-
sas City, Missouri, well field (well field number 4, pls.
2-6) is approximately circular and extends from the
well field northwest toward the Missouri River. The
length of the total CRA ranges from approximately 1
km for the LPLR scenario (pl. 2) to almost 1.5 km in

the two high river-stage scenarios. The length of the
total CRA is limited by the flow boundary of the 1is-
souri River to the west and interference from an indus-
trial well field (well field number 5, pls. 2-6) to the
southeast. Unlike the Missouri Cities Water Company
and the Gladstone well field CRAs that intersect
ground water as it flows toward the Missouri River,
the total CRA for the North Kansas City well fielc' is
bounded on the upgradient edge by the Missouri
River. Induced recharge from the Missouri River is
shown by the location of the 1- and S5-year CRAs. The
1-year CRA is next to and beneath the Missouri River
for all pumping and river-stage scenarios. However,
during the high pumping scenarios, the 1-year CRA is
composed of two areas; one next to and beneath tt =
river and another around the well field.

Simulated pumping rates for the North Kansas
City well field ranged from 9,884 m?>/d for the low
pumping-rate scenarios to 16,476 m>/d for the high
pumping-rate scenarios (table 19). The total CRA
(table 20) ranged from 0.563 km? for the LPLR sce-
nario (pl. 2) to 1.058 km? for the QUASI scenario.

Table 19. Simulated pumping rates for the North Kansas City, Missouri, well field

Well location In model

Pumping rate,
In cublc meters per day

Layer Row Column Low Jan, 1993  Average High
4 102 182 2,471 3,300 3,295 4,119
4 103 182 2,471 3,300 3,295 4,119
4 103 182 2,471 3,300 3,295 4,119
4 104 182 2,471 3,300 3,295 4,119
Total 9,884 13,200 13,180 16,476
Table 20. Contributing recharge areas for the North Kansas City, Missouri, well field
Area, in square kilometers
Low pumping rate Jan. 1993 High pumping rate
Contrlbuting quasl-steady
recharge area Low river stage High river stage state Low rlver stage High river stage
1-year 0.09 0.068 0.158 0.27 0.203
S-year 45 54 .63 54 .585
10-year 023 .09 135 113 135
100-year 0 .18 135 .09 113
Total 0.563 0.878 1.058 1.013 1.036
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The total CRA for the North Kansas City well
field increased with higher pumping, decreased with
lower pumping, increased during high river stage, and
decreased during low river stage. The 1-year CRA
decreased with high river stage, but increased with
increased pumping. The 5-, 10-, and 100-year CRAs
increased with high pumping and increased with high
river stage. The change in area of the total CRA for
this well field with respect to pumping is normal
because increased pumping increased the size of the
total CRA. As discussed earlier, well fields located
close to a major river obtain a large part of their water
from induced recharge.The North Kansas City well
field is located far enough from the river so that
increased pumping required a larger area of the aquifer
for water supply rather than an increased rate of
induced recharge from the Missouri River. As the
pumping rate increased, the rate of induced recharge
from the river probably also increased, but that
increased rate alone was not enough to supply the well
field.

independence, Missourl, Well Fleld

The shape of the total CRA for the Indepen-
dence, Missouri, well field (well field number 8, pls.
2-6) is approximately a half-circle bounded by the
alluvial valley wall to the south and by the Missouri
River to the north. The part of the total CRA that
extends across the Missouri River to the west for each
pumping and river-stage scenario indicates that flow
occurs beneath the river. The greatest changes in the
total CRA occur in the area across the river and to the
west of the well field. However, the entire river bend
within the confines of the alluvial valley walls to the
south and the Missouri River to the north, with the
exception of a small area on the extreme eastern edge,
are a part of the total CRA for all pumping and river-
stage scenarios. Induced recharge from the Missouri
River is indicated by the 1- and 5-year CRAs located
next to the Missouri River for all scenarios.

The location and shape of the total CRA for the
Independence well field across the Missouri River is
different for each scenario and is affected not only by
pumping rates and river stage, but also by the low
ground-water gradient west of the well field across the
river and the possible interference of pumping from
the Liberty, Missouri, well field (well field number 9,
pls. 2-6) located north of the Independence well field.
The effect of this interference is illustrated by compar-
ing the total CRA between the HPLR and LPLR sce-

narios. The component of the Independence well field
total CRA across the Missouri River for the HPLR
scenario (pl. 5) is a narrow band approximately 0.25 to
0.5 km wide and almost 5 km long adjacent to the
southwest edge of the total CRA for the Lib=rty well
field. When pumping rates decrease in the I.PLR sce-
nario (pl. 2), the component of the total CRA across
the Missouri River for the Independence well field
shifts north in response to the decrease in size of the
total CRA of the Liberty well field and expands to
approximately 0.5 to 1 km in width. The ef™ct of
changes in pumping rate on the location of the total
CRA across the Missouri River is greater for the high
river-stage scenarios because of the relatively low
ground-water gradient. The total CRA acro-s the Mis-
souri River for the LPHR scenario (pl. 3) extends
northwest of the well field and is approximately 6.5
km long and as much as 1 km wide. However, the total
CRA across the Missouri River for the HPHR scenario
(pl. 6) is much smaller and is composed of only a few
isolated areas located along the southwestern edge of
the Liberty well field total CRA and next tc the north
alluvial valley walls. The decrease in the total CRA
for the Independence well field in the HPH scenario
(pl. 6) was caused by the diversion of ground water
toward the Liberty well field as shown by th-= increase
in the total CRA for the Liberty well field for this sce-
nario.

Simulated pumping rates for the Independence
well field (table 21) ranged from 38,816 m"/d for the
QUASI scenario (pl. 4) to 112,864 m?/d for the high
pumping-rate scenarios. The total CRA (tat'e 22)
ranged from 6.39 km? for the HPHR scenar’n (pl.6) to
9.406 km? for the LPHR scenario (pl. 3).

The total CRA for the Independence well field
decreased with increased pumping rates for both high
and low river-stage scenarios, increased with an
increase in river stage for the low pumping-rate sce-
narios and decreased with an increase in river stage for
the high pumping-rate scenarios. The 1-year CRA was
smallest for the QUASI scenario (pl. 4) when pumping
rates also were small and increased for the two low
pumping-rate scenarios to the same area.

The change in size of the total CRA for the
Independence well field with respect to changes in
pumping rates and river stage is similar to the changes
in the total CRA for the Missouri Cities Water Com-
pany well field (well field number 1, pls. 2-6) when
the ground-water gradient was low. As previously dis-
cussed, the decrease in the total CRA for th>~ HPHR
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Table 21. Simulated pumping rates for the Independence, Missouri, well field

Pumping rate,

Well locatlon In model In cublc meters per day

Layer Row Column Low Jan. 1993  Average High
3 85 294 2,116 1,213 2,821 3,527
3 85 296 2,116 1,213 2,821 3,527
3 85 298 2,116 1,213 2,821 3,527
3 87 294 2,116 1,213 2,821 3,527
3 89 293 2,116 1,213 2,821 3,527
3 90 286 2,116 1,213 2,821 3,527
4 86 189 2,116 1,213 2,821 3,527
4 86 289 2,116 1,213 2,821 3,527
4 87 288 2,116 1,213 2,821 3,527
4 87 288 2,116 1,213 2,821 3,527
4 87 289 2,116 1,213 2,821 3,527
4 87 289 2,116 1,213 2,821 3,527
4 88 285 2,116 1,213 2,821 3,527
4 88 286 2,116 1,213 2,821 3,527
4 88 286 2,116 1,213 2,821 3,527
4 88 287 2,116 1,213 2,821 3,527
4 88 288 2,116 1,213 2,821 3,527
4 88 288 2,116 1,213 2,821 3,527
4 88 289 2,116 1,213 2,821 3,527
4 88 289 2,116 1,213 2,821 3,527
4 88 289 2,116 1,213 2,821 3,527
4 88 290 2,116 1,213 2,821 3,527
4 89 284 2,116 1,213 2,821 3,527
4 89 286 2,116 1,213 2,821 3,527
4 89 286 2,116 1,213 2,821 3,527
4 89 287 2,116 1,213 2,821 3,527
4 89 291 2,116 1,213 2,821 3,527
4 90 286 2,116 1,213 2,821 3,527
4 90 287 2,116 1,213 2,821 3,527
4 90 285 2,116 1,213 2,821 3,527
4 91 285 2,116 1,213 2,821 3,527
4 91 285 2,116 1,213 2,821 3,527
Total 67,712 38,816 90,272 112,864

Individual Well Fleld Results 59



Table 22, Contributing recharge areas for the Independence, Missouri, well field

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Contributing quasi-steady
recharge area Low river stage High river stage state Low river stage High rlver stage
1-year 0.293 0.293 0.203 0.428 0.36
5-year 1.215 1.035 765 1.665 1.395
10-year 1.058 99 .878 .99 .99
100-year 4.86 6.773 4.59 4.163 3.195
1,000-year .293 315 54 .405 45
Total 7.719 9.406 6.976 7.651 6.39

scenario (pl. 6) is explained by the combined effect of
a low ground-water gradient across the Missouri
River, west of the Independence well field caused by
increased river stage, and the increased pumping of
the Liberty well field (well field number 9, pls. 2-6).
Therefore, the gradient beneath the Missouri River
toward the well field decreased so that water that pre-
viously discharged to the well field during low-river
stage instead discharged into the Missouri River dur-
ing high-river stage.

Liberty, Missourl, Well Fleld

The shape of the total CRA for the Liberty, Mis-
souri, well field (well field number 9, pls. 2-6) is
approximately oval, is longest in an east-west orienta-
tion, and is bounded on the north by the alluvial valley
walls. The dimensions of the total CRA range from
approximately 6.5 km long by 3 km wide (LPHR sce-
nario, pl. 3) to approximately 8 km long by 4 km wide
(HPLR scenario, pl. 5). The total CRA is skewed to
the west, and, for the HPLR scenario, the well field is
approximately 5 km from the western edge and
approximately 3 km from the eastern edge of the total
CRA. The total CRA for the Liberty well field is large
as compared to other total CRAs in the study area.
This size difference is because little or no water is sup-
plied to the well field through induced recharge from
the Missouri River. Therefore, the total CRA extends
into the surrounding aquifer. No 1-year CRA exists for
any of the pumping and river-stage scenarios because
the area where the wells are located has a relatively
thick upper layer of clay and silty clay that inhibits
rapid downward movement of water from the surface

of the water table to the screened interval of the
pumped wells. The 5-year CRA is centered around the
well field for all pumping and river-stage scenarios.
The 10-year CRA is located in two general areas; one
centered around the well field and the other approxi-
mately 1 km to the southwest of the well fie'd. The
presence of the 10-year CRA to the southwast of the
well field is caused by an area of silt and sand with a
higher hydraulic conductivity in the same location in
the upper part of the aquifer. Surface recharge from
rainfall can enter the aquifer and move to th~ screened
interval of the wells more quickly in this arca than in
other nearby areas. The 100- and 1,000-yea~ CRAs
include most of the total CRA in all scenarios.

Simulated pumping rates for the Libarty well
field (table 23) ranged from 7,950 m>/d for the low
pumping rate scenarios to 13,254 m?>/d for the high
pumping-rate scenarios. The total CRA (table 24)
ranged from 14.874 km? for the LPHR scenario (pl.
3) to 23.469 km? for the HPHR scenario (1. 6). The
total CRA for the Liberty well field increased with
increased pumping rates for both river-stag=e scenar-
ios, decreased with increased river stage in the low
pumping-rate scenarios, and increased slightly with
increased river stage for the high pumping-rate
scenarios.

Communlty Water Company Well Fleld

The shape of the total CRA for the Community
Water Company well field (well field numb-r 10, pls.
2-6) is long and relatively narrow for both of the low
river-stage scenarios (pls. 2, 5) and the QUASI sce-
nario (pl. 4), extends into the Little Blue River valley

60  Simulation of Ground-Water Fiow in the Missourl River Aliuvial Aquifer



Table 23. Simulated pumping rates for the Liberty, Missouri, well field

Waell location in model

Pumping rate,
In cubic meters per day

Layer Row Column Low Jan. 1993  Average High
3 60 296 1,325 1,363 1,766 2,209
3 61 296 1,325 1,363 1,766 2,209
3 61 296 1,325 1,363 1,766 2,209
3 62 296 1,325 1,363 1,766 2,209
3 63 296 1,325 1,362 1,766 2,209
3 64 296 1,325 1,362 1,766 2,209
Total 7,950 8,176 10,596 13,254

Table 24. Contributing recharge areas for the Liberty, Missouri, well field

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Contributing quasl-steady

recharge area Low river stage High river stage state Low river stage High river stage

5-year 0.135 0.113 0.18 0.293 0.248

10-year .858 315 855 2.115 .968

100-year 14.378 13.973 14.558 20.543 21.465

1,000-year 54 473 563 .495 788

Total 15.911 14.874 16.156 23.446 23.469

approximately 6.5 km south of the well field, and is
0.25 to 0.5 km wide. The shape for the LPHR scenario
(pl. 3) is a smaller oval that extends toward the Mis-
souri River and is approximately 2.5 km long and 1
km wide. The shape of the total CRA for the HPHR
scenario (pl. 6) is elongated to the south and divides
into two arms approximately 1.5 km south of the well
field. One arm extends south for 4.5 km from the
divide and the other arm extends to the southwest for
almost 3 km from the divide.

The relatively long narrow shape of the total
CRA for the LPLR, HPLR, and QUASI scenarios (pls.
2, 4, 5) was caused by the interception of ground water
by the Community Water Company well field as the
water moved downgradient toward the Missouri River.
The absence of a 1- or 5-year CRA and the fact that
the total CRA does not intersect the Missouri River for
these scenarios indicates the relatively small effect
that pumping this well field has on ground-water flow.
The increase of river stage alters the shape of the total

CRA because the regional ground-water gradient near
the well field becomes lower. The increase of rive-
stage for the low pumping-rate scenarios changed the
total CRA from the long narrow shape for the LPI.R
scenario (pl. 2) to the smaller shorter shape of the
LPHR scenario (pl. 3). The increase of river stage for
the high pumping-rate scenarios caused the total C™ A
from the HPLR scenario (pl. 5) to expand for the
HPHR scenario (pl. 6) to include an additional arm to
the southwest. The branching of the total CRA for the
HPHR scenario (pl. 6) was caused by the presence of a
silty clay deposit with low hydraulic conductivity in
the aquifer represented in layer 3 of the model.

Simulated pumping rates for the Communit;
Water Company well field (table 25) ranged from 852
m?/d for the low pumping-rate scenarios to 1,420 r1’/d
for the high pumping-rate scenarios. The total CRA
(table 26) ranged from 1.396 km? for the LPHR sce-
nario (pl. 3) to 3.173 km? for the HPHR scenario (pl.
6).
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Table 25. Simulated pumping rates for the Community Water Company well field

Well locatlon In model

Pumpling rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High

3 66 337 426 568 568 710

3 66 337 426 568 568 710

Total 852 1,136 1,136 1,420

Table 26. Contributing recharge areas for the Community Water Company well field

Area, In square kllometers

Low pumping rate Jan. 1993 High pumping rate
Contributing quasl-steady
recharge area Low river stage High river stage state Low river stage High river stage
10-year 0 0 0.045 0.068 0
100-year 1.508 1.148 1.778 2.003 2.825
1,000-year 0 .248 .023 0 328
Total 1.508 1.396 1.846 2.071 3.173

The total CRA for the Community Water Com-
pany well field increased with increased pumping
rates, decreased with increased river stage for the low
pumping-rate scenarios (pls. 2, 3), and increased with
increased river stage for the high pumping-rate scenar-
ios (pls. 5, 6). The 1- and 5-year CRAs were absent for
all pumping and river-stage scenarios because of the
relatively low pumping rate of the well field. The 10-
year CRA existed for only the QUASI (pl. 4) and
HPLR (pl. 5) scenarios and was centered around the
well field.

Tri-County Water Company Weii Fieid

The shape of the total CRA for the Tri-County
Water Company well field (well field number 11, pls.
2-6) is approximately oval for the low river stage and
QUASI scenarios (pls. 2, 4, 5), extends approximately
4.5 km from the well field to the west, and is approxi-
mately 2 km wide. The total CRA for the LPHR sce-
nario (pl. 3) extends into a buried alluvial channel
approximately 5.5 km to the south and is approxi-
mately 1 km wide. The total CRA for the HPHR sce-
nario (pl. 6) is divided into two arms. The divide
occurs approximately 2.5 km to the southwest of the
well field where the aquifer splits between the main

aquifer and a buried alluvial channel to the south. The
western arm extends approximately 3 km and the
southern arm extends approximately 4 km from the
divide.

The extent of the total CRA for all scenarios is
controlled on the south edge by the alluvial valley
walls and by the Missouri River, which supplies water
to the well field from the east. The long upgradient
extent of the total CRA for all pumping and river-stage
scenarios was caused by the interception of ground
water by the well field as water moved downgradient
toward the Missouri River.

The 1-year CRA is located next to the Missouri
River for all pumping and river-stage scena-ios and
indicates that the well field induced recharg= from the
Missouri River. The S5-year CRA is centered around
the well field but skewed to the west upgradient. The
10-, 100-, and 1,000-year CRAs extend toward the
west or southwest for all scenarios.

Simulated pumping rates for the Tri-County
Water Company (table 27) ranged from 4,257 m*/d for
the low pumping-rate scenarios to 7,095 m®/d for the
high pumping-rate scenarios. The total CRA (table 28)
ranged from 5.535 km? for the LPLR scena-io (pl. 2)
to 10.621 km? for the HPLR scenario (pl. 5). The total
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Table 27. Simulated pumping rates for the Tri-County Water Company well field

Well location in model

Pumping rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High

3 50 381 1,419 1,892 1,892 2,365

3 50 382 1,419 1,892 1,892 2,365

3 50 382 1,419 1,892 1,892 2,365

Total 4,257 5,676 5,676 7,095

Table 28. Contributing recharge areas for the Tri-County Water Company well field

Area, In square kilometers

Low pumplng rate Jan. 1993 High pumping rate
Contributing quasl-steady

recharge area Low river stage High river stage state Low river stage High river stage

1-year 0.023 0.045 0.045 0.113 0.068

5-year .63 .405 923 .855 .653

10-year .63 .405 743 .81 .698

100-year 8.123 3.51 7.853 8.528 7.448

1,000-year 518 1.17 225 315 1.373

Total 9.924 5.535 9.789 10.621 10.240

CRA decreased with an increase in river stage and
increased with an increase in well pumping rates for
all pumping and river-stage scenarios.

Ray County Public Water Supply District Number 2
Well Fleld

The shape of the Ray County Public Water Sup-
ply District Number 2 well field (Ray County PWSD
No. 2; well field number 12, pls. 2-6) is an elongated
oval, extends approximately 6.5 km northwest from
the well field, and is approximately 1.5 km wide for all
pumping and river-stage scenarios. The extent of the
total CRA is controlled by the alluvial valley wall to
the northeast that is a ground-water flow barrier and to
some degree by the Fishing River, which supplies
water to the well field from induced recharge. The
west edge of total CRA for all pumping and river-
stage scenarios coincides with the course of the Fish-
ing River. The long upgradient extent of the total CRA
was caused by the interception of ground water by the

well field as water flowed downgradient toward th=
Missouri River.

Simulated pumping rates for the Ray County
PWSD No. 2 well field (table 29) ranged from 2,460
m3/d for the QUASI scenario (pl. 4) to 4,558 m’/d for
the HPHR scenario (pl. 6). The total CRA (table 1)
ranged from 4.636 km? for the QUASI scenario (1. 4)
to 7.404 km? for the HPHR scenario (pl. 6). The total
CRA increased with an increase in pumping rates and
river stage for all pumping and river-stage scenarins.

Excelslor Springs, Missourl, Weil Field

The shape of the total CRA for the Excelsic~
Springs, Missouri, well field (well field number 13,
pls. 2-6) is circular and has an approximate diameter
of 2 km with an arm extending northward into the
Fishing River alluvial valley for approximately 3 km
for all pumping and river-stage scenarios. The long
northern arm of the total CRA was caused by the inter-
ception of water by the well field as water moved
downgradient toward the Missouri River. The extent
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Table 29. Simulated pumping rates for the Ray Gounty Public Water Supply District Number 2 well field

Waell location In model

Pumping rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High

2 40 437 1,016 615 1,354 1,693

2 40 437 352 615 469 586

2 41 435 703 615 937 1,172

2 41 437 664 615 885 1,107

Total 2,735 2,460 3,645 4,558

Table 30. Contributing recharge areas for the Ray County Public Water Supply District Number 2 well field

Area, In square kilometers

Low pumpling rate Jan. 1993 High pumpling rate
Contributing quasl-steady
recharge area Low river stage High river stage state Low river stage High river stage
5-year 0.18 0.135 0.135 0.405 0.273
10-year 428 293 518 518 428
100-year 432 5.535 3.735 5.445 6.323
1,000-year 27 .405 248 225 34
Total 5.198 6.368 4.636 6.593 7.474

of the total CRA is controlled by the alluvial valley
wall to the north that is a flow barrier and by Cooley
Lake, which supplies water to the well field through
induced recharge. The 1-year CRA is non-existent for
all scenarios because of low pumping rates. The 5-
year CRA is centered around the well field for all sce-
narios. Part of the 5-year CRA is next to Cooley Lake
for the LPLR, HPLR, and QUASI scenarios and indi-
cates induced recharge. A small part of the 5-year
CRA is located north of the well field in the Fishing
River alluvial valley for the QUASI (pl. 4) and HPLR
(pl. 5) scenarios, which was caused by the presence of
a sand with a high hydraulic conductivity at that loca-
tion that allowed water to enter the lower parts of the
aquifer where water then traveled more quickly to the
well field. The 10-year CRA is centered around the
well field and has a small northern part in the Fishing
River alluvial valley for all scenarios and a small part
located near Cooley Lake for the LPLR, QUASI,
HPLR, and HPHR scenarios (pls. 2, 4, 5, 6). The 100-
year CRA extends toward Cooley Lake to the west and
to the Fishing River alluvial valley to the north for all
scenarios. The 100-year CRA is divided into two parts

for the LPLR (pl. 2) and QUASI (pl. 4) scenarios
because of the presence of a clay with a low hydraulic
conductivity at the surface that limited the rate of
water movement downward into the lower parts of the
aquifer. The 1,000-year CRA is located north of the
well field in the Fishing River alluvial valley for all
scenarios.

Simulated pumping rates for the Excelsior
Springs well field (table 31) ranged from 4,332 m%/d
for the low pumping-rate scenario to 7,216 m?>/d for
the high pumping-rate scenario. The total CRA (table
32) ranged from 3.309 km? for the LPLR s-enario (pl.
2) to 8.483 km? for the HPHR scenario (pl. 6). The
total CRA increased with increased pumpir g rates and
river stage for all pumping and river-stage scenarios.

Lake City Army Ammunition Piant Weli Fieid

The shape of the total CRA for the Lake City
Army Ammunition Plant well field change- substan-
tially between each of the pumping and river-stage
scenarios (well field number 14, pls. 2-6). The extent
of the total CRA is limited by the alluvial valley walls
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Table 31. Simulated pumping rates for the Excelsior Springs, Missouri, well field

Waell iocation In modei

Pumping rate,
In cubic meters per day

Layer Row Column Low Jan. 1993  Average High

2 23 391 1,083 1,246 1,443 1,804

2 23 391 1,083 1,246 1,443 1,804

2 24 391 1,083 1,246 1,443 1,804

2 25 391 1,083 1,246 1,443 1,804

Total 4,332 4,984 5,772 7,216

Table 32. Contributing recharge areas for the Excelsior Springs, Missouri, well field

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Contributing quasi-steady

recharge area Low river stage High river stage state Low river stage High river stage

S-year 0.203 0.27 0.248 0.518 0.315

10-year 428 .36 473 .495 72

100-year 2.385 - 6.188 2.768 4703 6.593

1,000-year 293 518 .158 .495 855

Total 3.309 7.336 3.647 6.211 8.483

of the Little Blue River alluvial valley to the north and
west, the walls of the abandoned Missouri River allu-
vial valley now occupied by Fire Prairie Creek to the
east, areas of low vertical hydraulic conductivity, and
local drainage.

The effect of river stage on the shape of the total
CRA is evident between the low river-stage scenarios
and the high river-stage scenarios. The total CRA is
divided into multiple parts for low river-stage scenar-
ios (LPLR, pl. 2; HPLR, pl. 5). The areas between the
total CRA do not contribute water to the well field.
High river-stage scenarios (LPHR, pl. 3; HPHR, pl. 6)
have an undivided total CRA. The most probable
explanation for these differences is the change in
ground-water gradient and flow direction between the
low river-stage scenarios and the high river-stage sce-
narios in the vicinity of the well field. During the low
river-stage scenarios, the total CRA for the well field
extends to the Little Blue River, indicating induced
recharge as a source of water. The divide between the
northern and southern total CRA was most probably
caused by lower pumping rates and the eastward flow
of shallow ground water to Fire Prairie Creek, where

the water discharged. During the high river-stage sce-
narios, the total CRA is undivided because the low
regional ground-water gradient in the vicinity of the
well field decreased the lateral movement of water
eastward toward Fire Prairie Creek and increased the
effect of pumping rates on the potentiometric surface
by creating an extremely broad, but shallow, cone of
depression.

Simulated pumping rates for the Lake City
Army Ammunition Plant well field (table 33) ranged
from 3,055 m%/d for the low pumping-rate scenarios to
5,092 m%/d for the high pumping-rate scenarios. The
total CRA (table 34) ranged from 3.173 km? for the
QUASI scenario (pl. 4) to 10.779 km? for the HPHR
scenario (pl. 6). The total CRA increased with
increased pumping rates and river stage for all pump-
ing and river-stage scenarios.

Industrlal Well Flelds

Nineteen industrial well fields with 37 wells
are known to be present within the study area (tebhle
35). The six industrial well fields that have large
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Table 33. Simulated pumping rates for the Lake City Army Ammunition Plant well field

Waell location in model

Pumping rate,
In cublc meters per day

Layer Row Column Low Jan. 1993  Average High
2 131 359 524 491 698 873
3 130 368 629 491 839 1,049
3 130 372 146 491 194 243
3 133 365 518 491 690 863
3 133 370 0 491 0 0
3 134 356 440 491 587 734
3 135 360 53 491 70 88
3 137 356 0 491 0 0
3 137 365 313 491 419 523
3 137 369 432 491 575 719

Total 3,055 4910 4,072 5,092

Table 34. Contributing recharge areas for the Lake City Army Ammunition Plant well field

Area, In square kilometers

Low pumplng rate Jan. 1993 High pumping rate
Contributing quasl-steady
recharge area Low river stage High river stage state Low river stage High rive- stage
10-year 0.068 0 0 0.315 0.0€8
100-year 4.05 4.568 1.328 4.275 8.123
1,000-year 833 54 1.845 1.283 2.5¢8
Total 4951 5.108 3.173 5.873 10.779

CRAs (table 36; pls. 2—6) include the National
Starch Company, Inc. well field (well field number
5), the Chevron Chemical Company well field (well
number 7), Phillips Petroleum well fields (well field
number 18 and well number 23), the Sealright Com-
pany well field (well number 25), and the Reichhold
Chemicals, Inc./Certain-Teed Corp. well field (well
field number 27). The total CRA for the Chloride
Industrial Batteries well field (well number 29) is
small and present in model results only during the
HPHR scenario (pl. 6). The Phillips Petroleum wells
were grouped into two well fields because well num-
ber 23 (pls. 2-6) developed an individual CRA
because of its distance from other pumped wells. The

Reichhold Chemicals, Inc./Certain-Teed Corp. wells
were combined into one well field because of their
proximity to each other. The pumping rates of the
remaining industrial wells were not suffici=nt to pro-
duce individual CRAs from the model results. Most
of the industrial wells are north of the junction of the
Missouri and Kansas Rivers in North Kansas City,
Missouri, and Kansas City, Kansas, where the effects
of industrial well pumping on the CRAs of the pub-
lic-water-supply well fields are evident. The total
CRA of each of the 19 industrial well fields is not
presented individually, but is described as part of the
overall effect of pumping rates and river stage on the
alluvial aquifer in the following section.
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Table 35. Simulated pumping rates of the industrial well fields

Well location In model Pumplng rate, In cublc meters per day

Layer Row Column Low Jan. 1993  Average High

Well field 5 3 115 188 817 1,090 1,090 1,363
3 115 189 817 1,090 1,090 1,363

4 114 183 817 1,090 1,090 1,263

4 112 188 817 1,090 1,090 1,363

4 113 188 817 1,090 1,090 1,363

4 113 188 817 1,090 1,090 1,363

4 114 188 817 1,090 1,090 1,363

4 114 188 817 1,090 1,090 1,363

4 115 186 817 1,090 1,090 1,363

4 116 184 817 1,090 1,090 1,363

Total 8,170 10,900 10,900 13,530
Well 6 3 114 245 204 273 273 341
Well 7 3 109 269 409 545 545 681
Well 15 3 135 343 0 55 0 0
Well 16 2 46 54 0 545 0 0
Well 17 4 99 183 409 545 545 681
Well field 18 2 108 169 409 545 545 681
2 109 168 409 545 545 681

2 110 168 409 545 545 681

2 110 169 409 545 545 681

2 m 169 409 545 545 681

3 109 171 409 545 545 681

3 110 170 409 545 545 681

Total 2,863 3,815 3,815 4,767
Well field 19 4 108 195 245 327 327 409
4 109 195 1,226 1,635 1,635 2,044

Total 1,471 1,962 1,962 2,453
Well 20 4 101 196 204 273 273 341
Well 21 4 106 188 102 136 136 170
Well 22 4 108 183 102 136 136 170
Well 23 3 102 175 1,226 1,635 1,635 2,044
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Table 35. Simulated pumping rates of the industrial well fields—Continued

Waell location in model

Pumping rate, in cublc meters per day

Layer Row Column Low Jan. 1993  Average High

Well 24 3 102 169 102 136 136 170
Well 25 3 104 166 818 1,090 1,090 1,363
Well 26 3 86 165 102 136 136 170
Well field 27 3 101 162 409 545 545 681
100 162 1,022 545 1,363 1,703

4 101 163 409 545 545 681

Total 1,840 1,635 2,453 3,065
Well 28 4 98 163 409 545 545 681
Well 29 4 99 166 204 273 273 341
Well 30 4 95 165 409 545 545 681

Effects of Pumping Rates and River Stage
on Contributing Recharge Areas

The effect of well pumping rates and river stage
on the total CRA of well fields in the study area is
complex because (1) each well field has a unique ori-
entation with respect to the geometry of the aquifer,
the alluvial valley walls, the rivers, and the other
pumped wells in the study area; (2) the hydraulic prop-
erties of the aquifer in the vicinity of each well field
are different in both magnitude and spatial distribu-
tion; and (3) each well field has a different pumping
rate. For most well fields, an increase in pumping rates
increases the total CRA for both low and high river-
stage scenarios (fig. 37). However, the total CRAs for
well fields of National Starch Company, Inc. and Phil-
lips Petroleum (well field number 18) decreased with
increased pumping rates for the low river-stage sce-
narios, and the total CRAs for well fields of the Mis-
souri Cities Water Company, Independence, and
National Starch Company, Inc. decreased with
increased pumping rates for the high river-stage sce-
narios.

A change in river stage has a large effect on the
potentiometric surface gradient of the aquifer. Typi-
cally, an increased river stage lowers the regional
ground-water gradient between the alluvial valley
walls and the rivers in the study area. Most total CRAs

increased with increased river stage (fig. 3¢). How-
ever, the effect of a change in the ground-water gradi-
ent on the total CRAs is different for each well field.
For instance, the total CRAs for the well fields of
Gladstone, Chevron Chemical Company, Liberty,
Community Water Company, Tri-County Water Com-
pany, and Phillips Petroleum (well field number 18)
decreased with increased river stage for the low pump-
ing-rate scenarios and the total CRAs for well fields of
the Missouri Cities Water Company, Gladstone, Inde-
pendence, Tri-County Water Company, Phillips Petro-
leum (well number 23), Sealright Company, and
Reichhold Chemicals, Inc./Certain-Teed Corp.
decreased with increased river stage for the high
pumping-rate scenarios.

In general, ground water flows away from the
alluvial valley walls, toward the Missouri F iver, and
down the river valley. Well fields without close hydro-
logic boundaries upgradient of the regional flow direc-
tion, such as the Missouri River or the alluvial valley
walls, have relatively long elliptically shaped total
CRAs in the simulation because ground water traveled
a long distance along the flow gradient before it was
intercepted by the pumped wells. These include well
fields of the Missouri Cities Water Company, Glad-
stone, Independence, Community Water Ccpany,
Tri-County Water Company, Ray County P™SD No.
2, and Excelsior Springs. Wells located close to
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Table 36. Contributing recharge areas of the industrial well fields

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Well field Contrlbuting quasl-steady
number recharge area Low river stage High river stage state Low river stage High river stag~
5 1-year 0.023 0.023 0 0 0
5-year 158 .09 .203 .383 293
10-year 315 473 .63 45 45
100-year 3.6 3.51 3.735 2.34 2.61
1,000-year 0 0 0 0 .023
Total 4.096 4.096 4.568 3.173 3.376
7 1-year 0.045 0.045 0.045 0.045 0.045
5-year .023 .023 .023 .023 .023
10-year .09 .045 .09 .09 .045
100-year .18 0 135 .203 0
1,000-year .068 0 0 .045 225
Total 0.406 0.113 0.293 0.406 0.338
18 1-year 0 0 0 0 0
5-year .36 .293 .585 .698 54
10-year 743 473 495 .63 .495
100-year 3.285 2.475 2.205 2.048 2.498
1,000-year .023 .023 0 0 0
Total 4.411 3.264 3.285 3.376 3.533
23 1-year 0 0 0 0 0
5-year .068 .068 .09 158 113
10-year 27 135 293 54 .428
100-year 54 .855 .788 1.755 1.733
Total 0.878 1.058 1.171 2.453 2.274
25 1-year 0 0 0 0 0
5-year 0 .068 .09 113 .09
10-year 0 113 .248 .36 .248
100-year 0 698 .54 54 .63
1,000-year 0 .045 0 0 0
Total 0 0.924 0.878 1.013 0.968
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Table 36. Contributing recharge areas of the industrial well fields—Continued

Area, In square kilometers

Low pumping rate Jan. 1993 High pumping rate
Well field Contributing quasi-steady
number recharge area Low river stage High river stage state Low river stage High river stage
27 1-year 0 0 0 0 0
S-year 045 113 .203 .293 .203
10-year .203 27 473 675 45
100-year 72 1.35 1.328 1.305 1.508
Total 0.968 1.733 2.004 2,273 2.161
29 1-year 0 0 0 0
S-year 0 0 0 0
10-year 0 0 0 0 .023
Total 0 0 0 0 0.023

the alluvial walls, like the Liberty well field, have total
CRAss that extend long distances away from the allu-
vial valley walls because little water is available from
this boundary and recharge is unavailable from a
nearby river.

Proximity to a major river decreases the size of
a total CRA because the well or well field obtains a
large part of its water from recharge induced from the
river, as illustrated by the North Kansas City well
field. The simulated high pumping rate for the North
Kansas City well field of 16,476 m>/d corresponds to a
total CRA of just greater than 1 km? for both low and
high river-stage scenarios. In comparison, the simu-
lated high pumping rate for the Liberty well field (far-
ther from the river) is 13,254 m3/d, which corresponds
to a total CRA of more than 23 km? for both the low
and high river-stage scenarios.

Induced recharge because of proximity of a well
field to a river also may affect the spatial distribution
of individual CRAs associated with a specific time
within the total CRA for each well field. For example,
the Independence well field is located close to the Mis-
souri River and has the 1-year CRA located near the
river, but the 5- or 10-year CRAs are located in the
area closest to the wells for all scenarios because the
distance from the bottom of the riverbed to the
screened interval of the well is less than the distance
from the land surface to the screened interval of the
well. Also, because the bottoms of larger rivers typi-
cally intersect alluvial material of higher hydraulic
conductivity, ground water travels more quickly at this
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depth than at shallower depths where alluvial deposits
of lower hydraulic conductivity are located.

The value of the vertical conductance term lim-
its water flow between layers of the model to simulate
the vertical anisotropy of hydraulic conductivity
within the alluvial aquifer. This anisotropy is greatest
in the heterogeneously distributed finer-grained depos-
its present at shallow depths and represente in the
model by layer 1 and, to a lesser degree, in the more
homogeneously distributed silt and sand present in
deeper parts of the aquifer and represented in the
model by layers 2 and 3. The distribution of vertical
conductance between layers 1 and 2 and be‘ween lay-
ers 2 and 3 affects the relative distribution of a CRA
within the total CRA of each well or well field. For
example, the Liberty well field has a part of the 100-
year CRA located closer to the well field than a part of
the 10-year CRA because a low rate of vert'~al water
movement caused by the presence of clay n=ar the
land surface increased the travel time of water from
the water table to deeper parts of the aquife-. The part
of the 10-year CRA located farther from the well field
is present because a high rate of vertical water move-
ment caused by coarse deposits at the land surface
decreased the travel time of water from the water table
to deeper parts of the aquifer. Because the Fvdraulic
conductivity values in the deeper parts of th= aquifer
are higher and more uniformly distributed than in the
shallower parts, the rate of water movement is faster
and more uniform. Therefore, the rate of vertical water
flow from the shallower parts of the aquifer to the
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deeper parts often controls the time of travel of water
from the water table to the screened interval of a
pumped well and the distribution of the total CRA of a
well or well field.

Interference between pumped well fields also
affects the size and shape of total CRAs of well fields.
Well interference between the Independence well field
and Liberty well field has already been discussed.
However, the total CRAs of well fields located imme-
diately north of the junction of the Missouri and Kan-
sas Rivers show the greatest well interference effects.
Well fields located upgradient of the regional flow sys-
tem will intercept ground water before it reaches well
fields located downgradient. This limits the ground-
water supply and the extent of the CRAs of well fields
located downgradient in the system. This is exempli-
fied by the Phillips Petroleum, Sealright Company,
and Reichhold Chemicals, Inc./Certain-Teed Corp.
well fields (well field numbers 18, 25, and 27, pls.
2-6).

SUMMARY AND CONCLUSIONS

The Missouri River alluvial aquifer in the Kan-
sas City metropolitan area supplies all or part of the
drinking water for more than 900,000 people in 90
municipalities and public-water-supply districts and is
the only aquifer in the area that can supply large quan-
tities of ground water for public and industrial use.
Because of the importance of this resource to the met-
ropolitan area, a comprehensive ground-water protec-
tion plan is being developed for the Missouri River
alluvial aquifer. As a basis for this plan, hydrogeologic
data collected and compiled for more than 1,400 loca-
tions in the study area were entered into a geographic
information system and interfaced with a ground-
water flow model and a particle-tracking program to
determine the contributing recharge areas for public-
water-supply well fields.

The floodplains of the Missouri, Kansas, Blue,
Little Blue, and Fishing Rivers are underlain by allu-
vial deposits of clay, silt, sand, gravel, cobbles, and
boulders that form the alluvial aquifer and lie atop
shale, limestone, and sandstone bedrock. Several
abandoned alluvial channels are hydraulically con-
nected to the Missouri River alluvial aquifer and exist
as a result of changes in the course of the Missouri
River and its tributaries during glacial and interglacial
periods. The aquifer thickness ranges from less than 1
to about 59 meters. Average thickness is about 25

meters. The potentiometric surface is free to move
vertically over time in the unconfined Missouri River
alluvial aquifer and is the boundary across which
recharge from precipitation flows into the squifer and
discharge from evapotranspiration flows out of the
aquifer. However, because ground water usually is
deeper than 4.5 meters, evapotranspiration is not con-
sidered an important source of discharge. F echarge
has been estimated in several previous stuc'ies to be
between 2 and 25 percent of precipitation. Pecause the
study area has low local relief, topography has little
effect on the areal distribution of recharge. Rather, the
vertical hydraulic conductivity of soils directly con-
trols the rate of infiltration. Flooding, irrigation,
pumped wells, and dewatering during construction can
alter ground-water flow directions.

Reported hydraulic conductivity values for the
aquifer are between 0.1 and 1,400 meters per day;
transmissivity values are as large as 7,400 meters
squared per day, and specific yield is betwe=n 0.15 and
0.2. Ground-water flow between the aquifer and bed-
rock is thought to be minimal in compariscn to the
total flow of ground water in the aquifer because the
bedrock units have estimated hydraulic coructivities
between 0.003 and 3 meters per day.

A ground-water flow model of the Missouri
River alluvial aquifer in the Kansas City matropolitan
area was developed using the U.S. Geological Survey
model MODFLOWARC, a modified versicn of MOD-
FLOW. The model has a uniform grid size of 150 by
150 meters and contains 310,400 cells in 4 layers, 160
rows, and 485 columns. Hydrogeologic data from
within the study area were entered into the geographic
information system and assigned to each model cell by
interpolation. The model was calibrated to both quasi-
steady state hydraulic head data from the January 1993
synoptic water-level measurement and transient
hydraulic head data from river-stage data of August
1993 and synoptic water-level measuremerts from
October 1993 and February 1994. The steady state cal-
ibration was used to assess model geometr, confirm
the conceptual model of ground-water flow, test the
appropriateness of simulated boundary conditions, and
obtain approximate transmissivity and recharge arrays.
The root mean square error for the steady s*ate calibra-
tion was 1.15 meters. The transient calibration was
used to refine hydraulic properties of the model
through simulation of a period of prolonged aquifer
drainage from August 1993, immediately after the
peak of the flood of 1993, to February 1994, when
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river stage and ground-water levels had approached

typical conditions for that time of year. The root mean

square error for October 1993 was 0.71 meter and for

February 1994 was 0.80 meter. Sensitivity analysis

indicates that the model is most sensitive to increases

and decreases in calibrated hydraulic conductivity val-
ues and least sensitive to decreases in vertical conduc-
tance between layers 1 and 2 and increases in river
conductance.

Ground-water flow was simulated for five dif-
ferent well pumping-rate and river-stage scenarios to
represent the range of conditions expected to occur.
These scenarios include: (1) low pumping rates and
low river stage; (2) low pumping rates and high river
stage; (3) quasi-steady state conditions of January
1993; (4) high pumping rates and low river stage; and
(5) high pumping rates and high river stage. The 1-,
5-, 10-, 100-, and 1,000-year contributing recharge
areas (CRA) to each public-water-supply well field
for each of the five scenarios were determined with
the U.S. Geological Survey particle tracking program
MODPATH.

The effect of well pumping and river stage on
the total CRA of each well field in the study area is
different because of (1) the unique relation of each
well field to the geometry of the aquifer, the alluvial
valley walls, the rivers, and other pumped wells; (2)
the magnitude and spatial orientation of the hydraulic
properties of the aquifer in the vicinity of each well
field; and (3) the pumping rate of each well field. The
ground-water flow model and the particle-tracking
program results simulated these effects to determine
the total CRAs of each well field.

Several conclusions can be made based on the
results of particle-tracking analysis for the Missouri
River alluvial aquifer in the study area:

1. The interception of ground water by pumped wells
as it moved downgradient toward the Missouri
River caused the long upvalley extent of some
CRA:s.

2. Well fields located near alluvial valley walls have
total CRAs that extend from the walls because
little water is available from this boundary.

3. Induced recharge caused by proximity to a major
river reduces the size of the total CRA when
compared to the CRAs of other wells or well
fields with similar pumping rates but located far-
ther from a major river.

4. Induced recharge from a river affects the spatial dis-
tribution of the individual CRA associated with a

specific time within the total CRA for each well
field.

5. The distribution of vertical anisotropy of hydraulic
conductivity in the aquifer affects the relative
distribution of each CRA associated with a spe-
cific time within the total CRA of each well or
well field.

6. Low regional ground-water gradient in the vicinity
of a well field caused by high river stage may
increase the CRAs of those well fields by
increasing the effect of well pumping on the
potentiometric surface.

7. Movement of ground water beneath rivers beccuse
of pumped wells occurs in several locations in
the study area.
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